An Improved Quadrilateral Fitting Algorithm for the Water Column Contribution in Airborne Bathymetric Lidar Waveforms

نویسندگان

  • Kai Ding
  • Qingquan Li
  • Jiasong Zhu
  • Chisheng Wang
  • Minglei Guan
  • Zhipeng Chen
  • Chao Yang
  • Yang Cui
  • Jianghai Liao
چکیده

In this paper, an improved method based on a mixture of Gaussian and quadrilateral functions is presented to process airborne bathymetric LiDAR waveforms. In the presented method, the LiDAR waveform is fitted to a combination of three functions: one Gaussian function for the water surface contribution, another Gaussian function for the water bottom contribution, and a new quadrilateral function to fit the water column contribution. The proposed method was tested on a simulated dataset and a real dataset, with the focus being mainly on the performance of retrieving bottom response and water depths. We also investigated the influence of the parameter settings on the accuracy of the bathymetry estimates. The results demonstrate that the improved quadrilateral fitting algorithm shows a superior performance in terms of low RMSE and a high detection rate in the water depth and magnitude retrieval. What's more, compared with the use of a triangular function or the existing quadrilateral function to fit the water column contribution, the presented method retrieved the least noise and the least number of unidentified waveforms, showed the best performance in fitting the return waveforms, and had consistent fitting goodness for all different water depths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using airborne bathymetric lidar to detect bottom type variation in shallow waters

The shape and amplitude of the bathymetric lidar waveforms (the recorded time history of the reflected lidar pulses) contain information about the attenuation of the water and the bottom reflectivity in the survey area. This study considers the factors that affect the amplitude of the bottom return and examines the use of the amplitude of the bottom return to distinguishing between different bo...

متن کامل

Remote Sensing of Suspended Sediment Concentrations Based on the Waveform Decomposition of Airborne LiDAR Bathymetry

Airborne LiDAR bathymetry (ALB) has been shown to have the ability to retrieve water turbidity using the waveform parameters (i.e., slopes and amplitudes) of volume backscatter returns. However, directly and accurately extracting the parameters of volume backscatter returns from raw green-pulse waveforms in shallow waters is difficult because of the short waveform. This study proposes a new acc...

متن کامل

Performance Assessment of High Resolution Airborne Full Waveform LiDAR for Shallow River Bathymetry

We evaluate the performance of full waveform LiDAR decomposition algorithms with a high-resolution single band airborne LiDAR bathymetry system in shallow rivers. A continuous wavelet transformation (CWT) is proposed and applied in two fluvial environments, and the results are compared to existing echo retrieval methods. LiDAR water depths are also compared to independent field measurements. In...

متن کامل

A State of Art on Airborne Lidar Application in Hydrology and Oceanography: a Comprehensive Overview

Nowadays, lidar has been accepted as one of the important sensors providing accurate and dense 3D point cloud from earth surface terrain and water bathymetry. The basic idea of using lidar stems from the problem of measuring water depth without direct contacting with the water body or without any instrument mounted on the water surface in shallow regions. Bathymetric lidar that uses two differe...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018